2019-06-13 13:26来源:互联网作者:上海管理员




You should spend about 20 minutes on Questions 14-26, which are based on Reading Passage 2 below.

Back to the future of skyscraper design


Answers to the problem of excessive electricity use by skyscrapers and large public buildings can be found in ingenious but forgotten architectural designs of the 19th and early-20th centuries



A The Recovery of Natural Environments in Architecture by Professor Alan Short is the culmination of 30 years of research and award-winning green building design by Short and colleagues in Architecture, Engineering, Applied Maths and Earth Sciences at the University of Cambridge.

'The crisis in building design is already here,' said Short. 'Policy makers think you can solve energy and building problems with gadgets. You can't. As global temperatures continue to rise, we are going to continue to squander more and more energy on keeping our buildings mechanically cool until we have run out of capacity.

A Alan Short教授所著的《在建筑中恢复自然环境》一书是30年调查研究的结品,也是Short及其在剑桥大学建筑学、工程学、应用数学和地球科学领域的同事们共同完成的荣获绿色建筑设计奖的之作。

“建筑设计的危机已然来临,” Short说道。“决策者们认为,我们可以用一些小装置来解决能源和建筑问题。其实不然。随着全球气温持续升高,我们将继续浪费越来越多的能源去机械地降低建筑内的温度,直至能源耗尽。”


B Short is calling for a sweeping reinvention of how skyscrapers and major public buildings are designed - to end the reliance on sealed buildings which exist solely via the 'life support' system of vast air conditioning units. Instead, he shows it is entirely possible to accommodate natural ventilation and cooling in large buildings by looking into the past, before the widespread introduction of air conditioning systems, which were 'relentlessly and aggressively marketed' by their inventors.

B Short正在呼吁对摩天大楼和大型公共建筑的设计方式进行彻底的改革—一以停止依赖。封闭式建筑,因为它们只是依靠大型空调机组这样的“生命保障”系统而存在。与之相反,他证明了通过回顾过去,完全有可能在大型建筑中实现自然通风和降温我们可以看一看在被发明者“大肆推广”的空调系统普及之前的建筑设计。


C Short points out that to make most contemporary buildings habitable, they have to be sealed and air conditioned. The energy use and carbon emissions this generates is spectacular and largely unnecessary. Buildings in the West account for 40-50% of electricity usage, generating substantial carbon emissions, and the rest of the world is catching up at a frightening rate. Short regards glass, steel and air-conditioned skyscrapers as symbols of status, rather than practical ways of meeting our requirements.

C Short指出,为了让大多数现代建筑适宜居住,人们将其封闭起来并配备空调。这种做法所造成的能源消耗和碳排放都极为惊人,在很大程度上并没有必要。西方建筑物(的用电量)占用电量的409%—50%,产生了大量的碳排放,而世界其他地区(的用电量)正以惊人的速度迎头赶上。 Short将玻璃、钢铁和装有空调的摩天大楼视为地位的象征,而不是满足需求的切实可行的方法。


D Short's book highlights a developing and sophisticated art and science of ventilating buildings through the 19th and earlier-20th centuries, including the design of ingeniously ventilated hospitals. Of particular interest were those built to the designs of John Shaw Billings, including the first Johns Hopkins Hospital in the US city of Baltimore (1873-1889).

'We spent three years digitally modelling Billings' final designs,' says Short. 'We put pathogens· in the airstreams, modelled for someone with tuberculosis (TB) coughing in the wards and we found the ventilation systems in the room would have kept other patients safe from harm.

D Short的著作突出强调了19世纪和20世纪初尚在发展中却又复杂精妙的关于通风建筑的艺术和科学,包括巧妙设计通风的医院大楼。其中尤为让人感兴趣的是根据John Shaw Billings的设计建造一些建筑,包括美国巴尔的摩市的家约翰霍普金斯医院(1873-1889)

“我们耗时3年做出了 Billings最终设计的数字模型,"Shor说道。“我们将病原体释放到气流中,模拟肺结核病人在病房内咳嗽,之后我们发现,房间内的通风系统可以保护其他病人免受传染。


E 'We discovered that 19th-century hospital wards could generate up to 24 air changes an hour - that's similar to the performance of a modern-day, computer-controlled operating theatre. We believe you could build wards based on these principles now.

Single rooms are not appropriate for all patients. Communal wards appropriate for certain patients - older people with dementia, for example - would work just as well in today's hospitals, at a fraction of the energy cost.'

Professor Short contends the mindset and skill-sets behind these designs have been completely lost, lamenting the disappearance of expertly designed theatres, opera houses, and other buildings where up to half thevolume of the building was given over to ensuring everyone got fresh air.





F Much of the ingenuity present in 19th-century hospital and building design was driven by a panicked public clamouring for buildings that could protect against what was thought to be the lethal threat of miasmas - toxic air that spread disease. Miasmas were feared as the principal agents of disease and epidemics for centuries, and were used to explain the spread of infection from the Middle Ages right through to the cholera outbreaks in London and Paris during the 1850s. Foul air, rather than germs, was believed to be the main driver of 'hospital fever', leading to disease and frequent death. The prosperous steered clear of hospitals.

While miasma theory has been long since disproved, Short has for the last 30 years advocated a return to some of the building design principles produced in its wake.

F 19世纪之所以出现那么多设计精妙的医院和建筑,是因为恐慌的民众要求建造可以保护他们免受瘴气伤害的建筑。瘴气在当时被认为是致命的威胁,是一种可以传播疾病的毒气。人们害怕瘴气,是因为数百年来,它都被视为疾病和流行病的主要媒介,它还被认为是从中世纪的感染一直到19世纪50年代伦敦和巴黎霍乱爆发的原因。人们认为,污浊难闻的空气,而非病菌,是“热病”发作的主要原因,进而导致疾病和大量死亡。富人们则对医院唯恐避之不及。

尽管瘴气理论早已被推翻,但在过去的30年间, Short一直在提倡重拾因其而产生的些建筑设计理念。


G Today, huge amounts of a building's space and construction cost are given over to air conditioning. 'But I have designed and built a series of buildings over the past three decades which have tried to reinvent some of these ideas and then measure what happens.

'To go forward into our new low-energy, low-carbon future, we would be well advised to look back at design before our high-energy, high-carbon present appeared. What is surprising is what a rich legacy we have abandoned.'

G 如今,建筑空间和建造成本的很大一部分都用在了空调系统上。“但是过去这30年我已经设计并且建造了一系列建筑,运用的是早期的设计理念,然后验证其结果。



H Successful examples of Short's approach include the Queen's Building at De Montfort University in Leicester. Containing as many as 2,000 staff and students, the entire building is naturally ventilated, passively cooled and naturally lit, including the two largest auditoria, each seating more than 150 people. The award-winning building uses a fraction of the electricity of comparable buildings in the UK.

Short contends that glass skyscrapers in London and around the world will become a liability over the next 20 or 30 years if climate modelling predictions and energy price rises come to pass as expected.

H Short的设计理念有一些成功的案例,其中包括位于莱斯特市的德蒙福特大学的女王大厦。整座建筑可以容纳2000名员工和学生,完全采用自然通风、被动冷却和自然照明的方式建造,其中的两个礼堂(每个礼堂可容纳150多人)也是如此。这座获奖建筑的用电量只是英国同类建筑的一小部分。



I He is convinced that sufficiently cooled skyscrapers using the natural environment can be produced in almost any climate. He and his team have worked on hybrid buildings in the harsh climates of Beijing and Chicago - built with natural ventilation assisted by back-up air conditioning - which, surprisingly perhaps, can be switched off more than half the time on milder days and during the spring and autumn.

Short looks at how we might reimagine the cities, offices and homes of the future. Maybe it's time we changed our outlook.

I 他坚信,建造充分利用自然环境降温的摩天大楼适用于任何气候条件。他和因队已经在北京和芝加哥恶劣的环境下建造了混合结构的建筑——一自然通风设备辅以空调系统令人惊讶的是,在较暖和的天气以及春、秋季节,有一半以上的时间都不需要打开空调
















  • 走读班(6-10人)
  • 走读班(20-30人)
  • 住宿班(6-10人)
  • 住宿班(20-30人)
  • 雅思一对一
课程名称 班级人数 课时 学费 报名
雅思词汇语法班6-10人班 6-10人 48课时 ¥8800 在线咨询
雅思强化6-10人班 6-10人 96课时 ¥24800 在线咨询
雅思全程6-10人班 6-10人 192课时 ¥39800 在线咨询
雅思冲刺6-10人班 6-10人 96课时 ¥25800 在线咨询
雅思口语单项班 15-20人 按需定制 在线咨询
课程名称 班级人数 课时 学费 报名
雅思强化20-30人班 20-30人 96课时 ¥7800 在线咨询
雅思全程20-30人班 20-30人 192课时 ¥13800 在线咨询
雅思冲刺20-30人班 20-30人 96课时 ¥8800 在线咨询
课程名称 班级人数 课时 学费 报名
雅思强化住宿班 6-10人 152 ¥25800 在线咨询
雅思全程班(4周,住宿) 6-10人 304课时 ¥41800 在线咨询
雅思冲刺住宿班 6-10人 152课时 ¥26800 在线咨询
雅思词汇语法6-10人班(住宿) 8-10人 48课时 ¥9800 在线咨询
雅思3周特训住宿班 10 228 ¥30800 在线咨询
课程名称 班级人数 课时 学费 报名
雅思强化住宿班(20-30人) 20-30人 96课时 ¥8800 在线咨询
雅思全程住宿班(20-30人) 20-30人 192课时 ¥15800 在线咨询
雅思冲刺住宿班(20-30人) 20-30人 96课时 ¥9800 在线咨询
课程名称 班级人数 课时 学费 报名
雅思一对一 1人 按需定制 ¥980元 在线咨询
托雅预备十一特训班 6-8人 48课时 ¥4800 在线咨询
雅思词汇语法十一特训班 6-8人 48 ¥8800 在线咨询
雅思免费试听课 不限 ¥0元 在线咨询



  • 徐家汇校区
  • 人民广场校区
  • 浦东校区
  • 中山公园校区
  • 杨浦校区
  • 闵行校区
  • 松江校区
  • 封闭集训营
  • 地址:徐汇区裕德路126号


  • 地址:南京西路338号天安中心24楼


  • 地址:浦东新区世纪大道1128号耀通科技大厦3楼(地铁2号线世纪大道站12号口出)


  • 地址:长宁路1158号 贝多芬广场 A座4楼414室


  • 地址:杨浦区国宾路18号万达广场A座18楼


  • 地址:东川路1779-19号

    乘车路线:地铁5号线 东川路站4号口出

  • 地址:松江大学城四期校区:文汇路928弄想飞天地2204


  • 地址:上海市浦东新区惠南镇拱极路2151号


总部地址:北京市海淀区中关村大街28-1号6层601 总部电话:400-779-6688 总部:北京新航道教育文化发展有限责任公司

Copyright © www.xhd.cn All Rights Reserved 京ICP备05069206

  • 微信公众号
  • 微信社群