4008-125-888
det培训
首页>sat>SAT真题回忆>2019年8月24日北美SAT阅读真题回忆及答案解析—第五篇

2019年8月24日北美SAT阅读真题回忆及答案解析—第五篇

2019-09-25 15:33来源:互联网作者:上海管理员

摘要:今天上海新航道SAT培训小编为大家带来的是SAT北美8月份的考试,值得庆幸的是大家考的都是新题。根据大家的反应来看,普遍都有加试而且大部分学生觉得小说比较难,其他文章和科目都比较正常。下面跟上海新航道SAT培训班一起来看下SAT阅读真题。2019年8月24日北美SAT阅读真题回忆及答案解析—第五篇

今天上海新航道SAT培训小编为大家带来的是SAT北美8月份的考试,值得庆幸的是大家考的都是新题。根据大家的反应来看,普遍都有加试而且大部分学生觉得小说比较难,其他文章和科目都比较正常。下面跟上海新航道SAT培训班一起来看下SAT阅读真题。2019年8月24日北美SAT阅读真题回忆—第五篇

第五篇

Mercury was long thought to be lacking volatile compounds that cause explosive volcanism. That view started to change when the MESSENGER spacecraft returned pictures of pyroclastic deposits — the telltale signature of volcanic explosions. Now more detailed data from MESSENGER shows that volcanoes exploded on Mercury for a substantial portion of the planet’s history. The findings suggest Mercury not only had volatiles but held on to them for longer than scientists had expected.

Measuring geological timeTwo pyroclastic vents on the floor of Mercury’s Kipling crater, top, would likely not have survived the impact; they are more recent. The false color image of the same spot, bottom, marks pyroclastic material as brownish red.PROVIDENCE, R.I. [Brown University] — The surface of Mercury crackled with volcanic explosions for extended periods of the planet’s history, according to a new analysis led by researchers at Brown University. The findings are surprising considering Mercury wasn’t supposed to have explosive volcanism in the first place, and they could have implications for understanding how Mercury formed.

On Earth, volcanic explosions like the one that tore the lid off Mount St. Helens happen because our planet’s interior is rich in volatiles — water, carbon dioxide and other compounds with relatively low boiling points. As lava rises from the depths toward the surface, volatiles dissolved within it change phase from liquid to gas, expanding in the process. The pressure of that expansion can cause the crust above to burst like an overinflated balloon.

Mercury, however, was long thought to be bone dry when it comes to volatiles, and without volatiles there can’t be explosive volcanism. But that view started to change in 2008, after NASA’s MESSENGER spacecraft made its first flybys of Mercury. Those glimpses of the surface revealed deposits of pyroclastic ash — the telltale signs of volcanic explosions — peppering the planet’s surface. It was a clue that at some point in its history Mercury’s interior wasn’t as bereft of volatiles as had been assumed.

What wasn’t clear from those initial flybys was the timeframe over which those explosions occurred. Did Mercury’s volatiles escape in a flurry of explosions early in the planet’s history or has Mercury held on to its volatiles over a much longer period?

This latest work, available in online early view at the Journal of Geophysical Research: Planets, suggests the latter.

A team of researchers led by Tim Goudge, a graduate student in the Department of Geological Sciences at Brown, looked at 51 pyroclastic sites distributed across Mercury’s surface. They used data from MESSENGER’s cameras and spectrometers collected after the spacecraft entered orbit around Mercury in 2011. Compared with the data from the initial flybys, the orbital data provided a much more detailed view of the deposits and the source vents that spat them out.

The new MESSENGER data revealed that some of the vents have eroded to a much greater degree than others — an indicator that the explosions didn’t happen all at the same time.

“If [the explosions] happened over a brief period and then stopped, you’d expect all the vents to be degraded by approximately the same amount,” Goudge said. “We don’t see that; we see different degradation states. So the eruptions appear to have been taking place over an appreciable period of Mercury’s history.”

But just where that period of explosiveness fits into Mercury’s geological history was another matter. To help figure that out, Goudge and his colleagues took advantage of the fact that most of the sites are located within impact craters. The age of each crater offers an important constraint in the age of the pyroclastic deposit inside it: The deposit has to be younger than its host crater. If the deposit had come first, it would have been obliterated by the impact that formed the crater. So the age of the crater provides an upper limit on how old the pyroclastic deposit can be.

As it happens, there’s an established method for dating craters on Mercury. The rims and walls of craters become eroded and degraded over time, and the extent of that degradation can be used to get an approximate age of the crater.

Using that method, Goudge and his colleagues showed that some pyroclastic deposits are found in relatively young (geologically speaking) craters dated to between 3.5 and 1 billion years old. The finding helps rule out the possibility that all the pyroclastic activity happened shortly after Mercury’s formation around 4.5 billion years ago.

“These ages tell us that Mercury didn’t degas all of its volatiles very early,” Goudge said. “It kept some of its volatiles around to more recent geological times.”

The extent to which Mercury’s volatiles stuck around could shed light on how the planet formed. Despite being the smallest planet in the solar system (since Pluto was demoted from the ranks of the planets), Mercury has an abnormally large iron core. That finding led to speculation the perhaps Mercury was once much larger, but had its outer layers removed — either fried away by the nearby Sun or perhaps blasted away be a huge impact early in the planet’s history. Either of those events, however, would likely have heated the outer parts of Mercury enough to remove volatiles very early in its history.

In light of this study and other data collected by MESSENGER showing traces of the volatiles sulfur, potassium, and sodium on Mercury’s surface, both those scenarios seem increasingly unlikely.

“Together with other results that suggest the Moon may have had more volatiles than previously thought, this research is revolutionizing our thinking about the early history of the planets and satellites,” said Jim Head, professor of geological sciences and a MESSENGER mission co-investigator. “These results define specific targets for future exploration of Mercury by orbiting and landed spacecraft.”

参考答案

43 单询证 broad implications for astronomy in general = line 90-95 “Together with other results that suggest the Moon may have had more volatiles than previously thought, this research is revolutionizing our thinking about the early history of the planets and satellites,”;

44 无行号细节题 = which claim about M do the data provided by the initial MESSENGER flybys support = M's interior once contained elements and compounds with relatively low boiling points;

45 文章主旨题 = describe the investigation of an initially surprising findng;

46 无行号细节题; best states the conclusion reached by G team?= volcanic explsions occured on M over much of the planet history;

47 无行号细节题; compare with M data in 2008, M data in 2011 was more = comprehensive in scope;

48 词汇题 states = conditions;

49 无行号细节题; how did scientists determine that not all the volcanic explosions occured after the M formation = some craters containing pyro- deposits were created quite a long time after mercury formed;

50 词汇题 shed = cast;

51 询证题*2; disparity between M's small size and its abnormally large iron core = it cannot be explained by current theories regarding M's formation;

52 line 86-88 ; In light of this study and other data collected by MESSENGER showing traces of the volatiles sulfur, potassium, and sodium on Mercury’s surface, both those scenarios seem increasingly unlikely.

相关推荐:

2019年8月24日北美SAT阅读真题回忆及答案解析—篇

2019年8月24日北美SAT阅读真题回忆及答案解析—第二篇

2019年8月24日北美SAT阅读真题回忆及答案解析—第三篇

2019年8月24日北美SAT阅读真题回忆及答案解析—第篇四


相关热点: 新sat真题
免费领取资料

免费领取最新剑桥雅思、TPO、SAT真题、百人留学备考群,名师答疑,助教监督,分享最新资讯,领取独家资料。

方法1:扫码添加新航道老师

微信号:shnc_2018

方法2:留下表单信息,老师会及时与您联系

热门课程

  • SAT考前模考冲刺班
  • 走读班(3-6人)
  • 住宿班(3-6人)
  • SAT一对一
课程名称 班级人数 课时 学费 报名
SAT考前模考冲刺班 40课时 ¥3800 在线咨询
SAT十一特训班 6-8人 48课时 ¥16800 在线咨询
SAT模考刷题班 不限 4天 ¥5800 在线咨询
课程名称 班级人数 课时 学费 报名
SAT强化班(3-6人,走读) 3-6人 64课时 ¥21800 在线咨询
SAT冲刺班(3-6人.走读) 3-6人 32课时 ¥11800 在线咨询
SAT预备班(3-6人,走读) 3-6人 32课时 ¥10800 在线咨询
SAT基础班(3-6人,走读) 3-6人 64课时 ¥20800 在线咨询
课程名称 班级人数 课时 学费 报名
课程名称 班级人数 课时 学费 报名
SAT一对一 1 按需定制 在线咨询

免责声明
1、如转载本网原创文章,请表明出处;
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、如本网转载稿、资料分享涉及版权等问题,请作者见稿后速与新航道联系(电话:021-64380066),我们会第一时间删除。

  • 徐家汇校区
  • 人民广场校区
  • 浦东校区
  • 中山公园校区
  • 杨浦校区
  • 闵行校区
  • 松江校区
  • 封闭集训营
  • 地址:徐汇区裕德路126号

    乘车路线:地铁1、4号线上海体育馆、3号线9号线宜山路站、11号线上海游泳馆站

  • 地址:南京西路338号天安中心24楼

    乘车路线:地铁1、2、8号线人民广场站

  • 地址:浦东新区世纪大道1128号岚桥国际大厦3楼(地铁2号线世纪大道站12号口出)

    乘车路线:地铁2、4、6号线世纪大道站

  • 地址:长宁路1158号 贝多芬广场 A座4楼414室

    乘车路线:乘车路线:地铁3、4号线中山公园站

  • 地址:杨浦区国宾路18号万达广场A座18楼

    乘车路线:地铁10号线五角场站

  • 地址:东川路1779-19号

    乘车路线:地铁5号线 东川路站4号口出

  • 地址:松江大学城四期校区:文汇路928弄想飞天地2204

    乘车路线:地铁9号线松江大学城站下

  • 地址:上海市浦东新区惠南镇拱极路2151号

    乘车路线:地铁16号线惠南站

  • 微信公众号
  • 微信社群

注册/登录

+86
获取验证码

登录

+86

收不到验证码?

知道了

找回密码

+86
获取验证码
下一步

重新设置密码

为您的账号设置一个新密码

保存新密码

密码重置成功

请妥善保存您的密码
立即登录

为了确保您的帐号安全

请勿将帐号信息提供给他人/机构