SAT数学余数定理&因子定理大解密
SAT数学在改革后的SAT考试中由原来的占比33%提升到50%,虽然中国学生有着过硬的计算功底和大量的题海战术,但是很多同学发现未必能在考试中考到满意的分数,归根结底是两个原因:一是大量的文字信息题省查不到位,不能准确定位考点;二是做题方法不到位,导致简单题目耗时过多,最终得不偿失。
Remainder theorem and factor theorem 就是贯穿在SAT, ACT , SAT 2 数学当中一个非常重要的知识点,今天我们且来对这一知识点进行大解密。
Remainder theorem and factor theorem 余数定理和因子定理
If f(x)/(x-a) = g(x) with remainder r(x), then f(x) = (x- a)g(x) + r(x)
f(a) = (a-a)g(a) + r(a) = r(a) remainder
代入 x= a, f(a) = remainder
In particular, when x-a is a divisor/factor of f(x) if and only if f(a) = 0
先来看一题OG中的题目(下载,请:新SAT官方指南PDF下载)
For a polynomial p(x), the value of p(3) is −2. Which of the following must be true aboutp(x) ?
A) x−5 is a factor of p(x).
B) x−2 is a factor of p(x).
C) x+2 is a factor of p(x).
D) The remainder when p(x) is divided by x−3 is −2.
解析: 多项式p(x), 代入 x= 3不为0,表明 x= 3 不是方程的根,x-3不是方程的因子,应符合余数定理,表明p(x) divided by x- 3,cannot be divisible, the remainder is -2. 正确选项为 D
因子定理是余数定理的一个特例,相当于余数为 0
三种说法:
1. if x - a is a factor of f(x)
2. if f(x) is divisible by x - a
3. if f(x) divided by x+ a has no remainder
f(x) = (x - a)g(x)
f(a) = 0
再来一个例题:
The polynomial f(x) = x^3 + ax^2 + bx +2 isdivisible by (x+1) and by (x-2).
Find the value of a and of b, where
大部分同学可能会想尝试国际学校的Long division method,也就是长除法。Of course you can, but it just kind of waste of time \@@/
Now let’s try a different method
divisible意味着可以整除,x + 1 和 x-2是多项式的因子,f(x)可以因式分解变成 f(x) = x^3 + ax^2 + bx +c = (x+1)(x+2)g(x)
⇒ x = -1 时,代入原式, f(-1) = 0
f(-1) = (-1)^3 + a(-1)^2+ b(-1) + 2 = 0 化简得 a –b +1 = 0
⇒ x=2 时,代入原式,f(2) = 2^3+2^2a+2b+2=0化简得10 + 4a +2b= 0
解方程组
a –b +1 = 0
10 + 4a +2b= 0 得 a = -2, b=-1
怎么样,是不是都明白啦?希望对大家有所帮助哦~
5月去香港考试的同学,也许你还需要:2017年5月份香港考点介绍
SAT香港考试团,团队带你提分大作战。
对新航道新sat培训班感兴趣的同学,还可以在线咨询我们的老师哦!